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Symbols.  Cosmic fluids are as a rule highly turbulent. 

This entails the necessity of dimensional order-of-magnitude 

considerations preceding and often even replacing, a more 

rigorous dynamical theory. We shall hc^e use the symbol /a] to 

designate the order of magnitude of a physical quantity »;  In 

particular, (X) will designate a representative length and {oo\ 

will designate a represents-1 ive reciprocal time.  We shall use 

-2 the rationalized mks. system of units, whence u-£ = c  with the 

usual meaning of these, and other, electromagnetic symbols. For 

simplicity it will be assumed that the electrical conductivity, G", 

is constant throughout the fluid; £ and [i  will be assumed con- 

stant throughout space.  In vector equations all vectors will be 

designated bv Roman capital letters and scalars by greek or lower 

case roman letters. 

Fixed frame of roference.  In large-scale electro- 

dynami^n the electromagnetic effects arising from the difference 

in mass of the positive and negative carriers might not always 

be negligible.  We shall here ignore this type of effect and 

assume that all the effects considered can be described classically. 

namelv, by a combination of Maxwell's equations with the hydro- 

dynamic equations.  Hence V will designate throughout the material 

velocity of the fluid in a given frame of reference.  A" a general 

rule this velocity is small compared to the velocity of light, 

that Is 

{3} « 1 (1) 

If a conductor moves across a magnetic field, there 

appears an induced electric field of magnitude V x B.  From the 



 X- 
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electromagnetic field equations we tnen have 

pi"1 V   x B = J = £E +o-E + <rV x B * TlV (2) 

The terms on the right represent in turn, the displacement current, 

the conduction current, the induction current, and the convection 

current.  The convection current appears owing to the fact that 

(as we shall see later) E cannot in general be assumed divergence- 

free and hence there is a soace-charge density, T),   in the fluid. 

The ratio of displacement current to conduction current 

is of the order 

This non-dimensional quantity is well known from the electro- 

magnetic theory of metals.  To estimate it here we remember that 

<JO    now represents frequencies of the macroscopic motion of the 

-4 fluid.  Let us take to   = 10  corresponding roughly to periods cf 

a day.  Cosmis fluids are as a rule excellent conductors, of 

metallic order.  For the earth's core the conductivity has been 

estimated to be a factor of 10-lOU below that of iron  .  The 

material of stars is highly ionized and the conductivities are 

2'' again of metallic order '.  Clouds of ionized ga3es near stars or 
• 

in interstellar space show as a rule appreciable ion?' z.^ti.on; they 

are then again comparable to metallic conductors.  (This results 

from the fact that while the number density of ions becomes small, 

the mean free path becomes large in the snme oroportion).  Taking 
7 

as an example G~   -  10 , the conductivit?/ of ordinary iron, we 
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have >" = 10   whir.h 1g small indeed, u 

Prom the field equations we have (n,] = [e.  A E] , hence 

the ratio or the convection current to conduction current is 
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{^V/(TE}    =   {fcX-Vtf-}    -   {^j (4) 

and the  convection current  is  also  negligible^   (2)   reduces  to 

V7L  B ~ \L    = [LCE + u-crV x B (5) 

We next  compare  the  induction current   to  the net  current. 

The ratio   is 

{nC-YBJ /jV^-Bf     =    {u-C-Xv}    =   { Rm* (6) 

where R  is a non-dimensional quantity which will be designated 
m 

as the magnetic Reynolds number.  To elucidate the physical meaning, 

or one physical meaning, of this quantity we notice that if a 

current flows in a rigid conductor of linear dimensions X and 

conductivity o~   the period of free decay, in the absence of an 

impressed e.m.f., is of the order 

{'"dec} " {^2} <7) 

Again,   the periods  of  the material motion  of  the fluid  are of 

the order     f uo    ."j     =   j VX~   /.     Hence 

I R   )     =     \co    .   / cu^     ) (8) \   m > V    vel  '      dec } 

This relation  ^ndi^a+'-es  that R     i*>  a measure of the  coupling m 

between the mechanical motion and the electromagnetic field:  As 

we shall see, the presence of the term V x B in (5) implies that,, 

in the absence of free decay, the fluid carries the magnetic field 

along in its motion.  The decay phenomena may be visualized as a 

"diffusion" of the field across the conductor.  Strong coupling, 

including the important case of amplification of the field, 

requires that the transport of the field by the motion exceeds the 

rate of diffusion.  The distinctive property of cosmic 
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always smallJ in problems of cosmic hydrodynamics R is as a rule 

very large.  The relation of laboratory phenomena to cosmic 

phenomena cf magnetohydrodynamics is, in a rough analog, that of 

Poisseuilie flow to the large scale eddy motions in a star or 

cosmic cloud.  Here, we shall essentially confine ourselves to 

the cosmic case, that is to large numerical values of the 

magnetic Reynolds number, and shall not enter into a discussion 

3) of the laboratory experiments     .on  the  interaction of  sound waves 

with  a magnetic  field,     in order  to  estimate  R    for  the  earth's 
lil 

core we take, say c~   = 10 , V = 10" m/sec from observations of 

1) 6 
the secular magnetic variations  , and >. = 10 meters, giving 

R~  10 •  For extra-terrestrial phenomena X and V are larger by 

many powers of ten and R^ is corresnondingly larger. 

Returning now to (5) we see that the net current is 

negligibly small in large-scale fluids; we have a balance 

E*=^ - V x  B (9) 

in an excellent approximation.  It must not, however, be concluded 

from (5) that p7 x B is negligible in other conractions; we shall 

see for instance that the ponderomotive forces execteri by the f5e"M 

which depend on y    x B, are bv no means small. 

A further dimen3ionless quantitv of interest is the 

ratio of the electric to the magnetic energy density.  This is 

{ IEV^B
2}   =   [E2

/C
2

B
2
]   =   [32] (10) 

as  may be  seen   from  the  field  equation 

V x E = -3B/8t (11) 

or  elrje  directly from   (9). 



__ t- •* ' •*•* Tin i i i in -i --——~* 

.5- 

Taking the curl of (5) we obtain by virtue of (11) 

dB/at = V x (V x B) + v (7 2B (12) 
' in 

where the quantity 

vm = (fjrrl (13) 

will be designated as the magnetic viscosity.  We have R = XV/v 

which shows that the magnetic Reynolds number is obtained from 

the ordinary hydrodynamic Reynolds number by replacing v, the 

kinematic viscosity, by the magnetic viscosity, v •  It will 

appear more clearly later that v and v correspond to analogous 

physical effects. 

The integration of (12) is as a rule prohibitively 

difficult.  The physical meaning is brought out more clearly by 

a corresponding integral theorem" , 

£jV, --^J-dL (14) 

where the surface integral on the left is thought of as moving 

bodily with the fluid.  The contour integral on the right becomes 

3mall as R becomes large; in the limit of infinite conductivity m * 

we obtain the well known result that the magnetic lines of force 

are "frozen* in the fluid and are carried along with its motion. 

Prom (9) we may infer that the electrical soace charge 

5) does not  in general vanish     ,  since 

Tyfc  = 17-E = V-F x B -  B« Fx V (15) 

The ratio of the electric to the magnetic components 

of the electromagnetic stress tensor is, however, given by (10) 

and the electrostatic forces are negligible.  Furthermore it may 

be shown that the irrotational part of the current (5) is small 
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compared to  the divergence-free part so  that  the magnetic  effects 

corresponding to a non-vanishing TJ are also likelv to be  in 

general negligible.     We have from the  equation of continuity for 

the current,  on using   (15) 

[T'.J = _f, = [coeEA j    = £do£VB/X}«/<y2£.B] 

and on  the other hand 

Hence  it  follows   that 

{V- J / Vx J)   = {oAV j   =    (VV j     =   (P2 } (16) 

which is small.  Hence we conclude that for large magnetic 

Reynolds numbers we may, without loss of essential physical 

features, assume T] as negligible.  This can most conveniently be 

expressed by introducing a vector potential while dropping the 

corresponding scalar potential, thus 

B = \7  x A, S = -3A/3t, (7'A = 0 (17) 

which transforms   (5)   into 

dA/at  =Vx   ( |7x A)   +v    \72A (18) m " 

an  equation   that   is  somewhat  simpler  than   (12). 

Lorentz  Transformation.     In view of   (i)  vie may neglect 
2 

all terms of the order of P  and higher terns.  Texts on rela- 

tivlty ' indicate that 5" must be considered as an invariant; 

this follows from its connection with thermodynamical quantities 

which are invariant.  To within terms linear in 3 the Lorentz 

transformation from an unprimed system to a crimed system moving 

with velocity U reduces to 
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(19) 
R!   = R  -Ut,   t'   = t 

f7t = {7, 3/at1 = a/at + u»F 

Furthermore, in this aporoximation 

j« =   J + TIU, *n« = t) 

but the convection current may be neglected if U  =  V  .  The 

field vectors transform in the same approximation as 

E« = E + U x B, B' = B -U x E/c2 

but the last term in the equation for B' is by (9) of the order 
2 

P  and hence negligible.  The transformation equations for the 

electromagnetic quantities- thus reduce to 

E« = E + U x B 

(20) 
B' = B, J» = J, T)» = r, 

We have been brief in this deduction, but it should be emphasized 

that, as closer consideration shows, all terms linear in p have 

indeed been included. 

We see from (5) that if we transform to a frame of 

reference in which a given fluid particle is at rest, then the 

"local*1 electric field becomes small comoared to the average 

value of E over the fluid, for which (9) gives f E] = {^VB]. 

This latter relation, by the way, permits a convenient observation.: 

evaluation of the field, since V and B are quite directly measur- 

able , B being also lorentz-invariant to within terms of the order 

of B.  The actual current referred to a "local• system of 

reference  is therefore small, as  R   - compared to the *     m 

cur-rent in, say an engineering dynamo.  In such a machine tho 

current is |<j-E) = fcrVBj,  Considerable semantic difficult';." 

•~~iM^*>j*mm*mtam»emrwmmr*mm*Mmmmmmmwmammmmmmamm<imHmmm  1  '"» MUM———mm •'•mmSak - ••r-^f-• »*     •   .      - 
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are bound to arise when one speaks uncritically of the "electric 

currents" producing the magnetic fields of the earth, of sun3pots, 

7) etc.  It has been suggested in the literature  that since at 

"neutral" points (point3 where B vanishes in the "local" frame of 

reference) charged particles do not travel in snirals as they do 

elsewhere, phenomena of the type observed in gas discharges might 

occur which would lead to the acceleration of particles.  The 

sraalliiess of the "local" electric field makes this conclusion 

unlikely. 

Mechanical motion; Symmetrlzation.  The density of the 

ponderomotive force which the field exerts upon the fluid is 

p = j x B = -ji"
1B x (17x B) 

(21) 

= Ji-
1(B-P7)B -'S^-1//7 (B2) 

Here, the electrostatic forces produced by the space charges 

have been neglected since they are small by (10).  The work done 

on the fluid by these iorces per unit time and unit volume is 

4) V»F; it may be shown  by obtaining the energy integral f^om 

(5) and (11) that this is indeed the negative of the work done 

by the fluid on the field. 

In writing down the equations of motion we shall for 

simplicity assume that the fluid is incompressible.  The 

equations of motion are 

av/at * (v-I7)v = -p7^ ^(LIJ)"
1
{B*17)B + V^2

B    (22) 

where 

S y> -  P + u + (gii^B2 

and u is  the gravitational potential.     The  equations.   (12)   and 
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(22) together are the fundamental equations of field-notion of 

magnetohydrodynamics.  They can be put into a remarkably symmet- 

rical form8^5^. Letting 

P = V + [ftf-H,  Q = V -{?[i)-lB 

1      m   '  2      m 

and remembering that for an incompressible fluid 

Px (V x 3) = (B»7)V -(V*17)B 

we can  rewrite   (12)   and   (19)   as 

ap/at + (Q«P)P • - 7y* +F
2
(V1P + v2Q) 

I ~o (23) 
a ao/at  + (P-P)Q = - p^ +P^(v2P + v1Q) 

where now 

p - Vfc     + u/T  + (P-Q)2/8        (24) 

It should be noted that the symmetrized equations 

hold only for an incompressible fluid; no corresponding symmetrical 

formalism has as yet been found for the compressible case.  The 

equations suggest strongly that if magnetohydrodynamics is con- 

sidered from a statistical view point, as seems appropriate for 

turbulent fluids, the vectors V and (^if)" B should play comparable 

roles.  Energy transfer is possible both from and to the fluid. 

Many authors have therefore inferred that equipartition of the 

energy as between the kinetic energy of the fluid and the magnetic 

field energy night be assumed to hold in a first approximation: 

9) Batchelor  has, however, pointed out that if the statistical 

theory of turbulence is applied to magnetohydrodynamics, tha 

1 - wi,—winy   HWil M»,.i1H»i   IWHI    mil 
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magnetic field energy should be less than the equipartition value 

(25/ at least for the largest eddies.  The author hopes to show 

elsewhere that under certain conditions the field energy can also 

exceed the value given by (25).  For rough estimates, however, 

(25) should be useful.  An equivalent statement is clearly that 

•*!-> (oo) 

(V«7)V  =  (n?)-1 (B-^)B (26) 

the ponderomotive forces are in the mean comparable to the 

Inertial forces.  Schluter and Biermann   have pointed out that 

if the "frlctional* term in (12) is neglected this equation is 

of the type 

{aB/at} = {VH) (B) 

and that the solutions of this equation are of the general form 

(B)    = pBQ| (expU'HOt} 

Therefore, if a small magnetic stray field exists in a conducting 

fluid, it will In the average be amplified at an exponential 

rate until some statistical equilibrium value near (25) is reached. 

Dissipation .  The quantity 

v/vm = Rm/R = JMSV (27) 

measures the ratio of the generation of heat by viscous friction 

In the fluid to the generation of Joule's heat by the electro- 

magnetic field.  Unless this ratio happens to be close to unity, 

one form of dissipation will as a rule predominate.  Thi3 form of 

dissipation will also determine the cutoff of the turbulence 

spectrum at the side of the smallest eddies. 

^..j — mi •* i'<itM8*Sf • 0:. 
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We  can obtain  an  estimate of  (27)   for the case or an 

ionized gas.     From kinetic   theory we  have v  = v 1   '3  and op 
2 (T= ae Nl /2mv where 1^ is the mean free path, a the degree of 

ionization, N the number density, m and v are mass and mean 

velocity of the electrons, v    mean velocity of the molecules. o 
2     —1 A Since Lj -   (TIN     )"    where  cr   is  the   collision diameter,   snri 

,1/2 v =   (m/m   )   'c' we  can  write  this 

i \l/2 

6% 

Consider hydrogen  and  let (mks  units)  a     = 10"    m,   then 

„     2/m \ 1/2     ,        A *»-*M rV (28) 

(iC-v  « 2.10"4a/p (29) 

This result shows that in interstellar gas clouds where $   is 

very small (10 ~mks) the dissipation is entirely caused by 

mechanical friction, whereas in the interior of stars whore 

2    is in excess of unity the dissipation is entirely electro- 

magnetic J the transition domain, CM/TV \     =1, occurs near the 

density values obtaining in the photospheres of stars. 

One should emphasize that even when the electromagnetic 

dissipation is numerically large, the quantity v - (u£~)~  is 

not In itself a measure of the rate at which the field is 

dissipated*  Since cosmic fluids are highly turbulent, the 

actual transport or dissipation of any quantity is determined, 

not by the molecular coefficients of diffusion but by the 

corresponding eddy diffusivities which are as a rule very much 

larger than the former.  This applies to scalar orcoerties such 

as heat as well as to vectorial pronerties such as momentum, and 

9) clearly must apply to the magnetic field in the fluid  2  The 

2) calculation  cf  the  free   decay for  a body as   large  as   the  sun 

mmmmmmmm^i^^mmmm^mmtm^ ww yy— m» 
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yields decaT? times longer than the age of the universe.  This 

asietin+'S 1v   essence to a computation of the magnetic Reynolds 

number; there can be little doubt that the general result of 

turbulence observations applies to the magnetic diffusivity; the 

larger the Reynolds number, the more the eddy diffusivity exceeds 

the molecular diffusivity in order of magnitude.  The disap- 

pearance of sunspot magnetic fields in the course of a few days 

or weeks is certainly a matter of eddy diffusion. 

Electromagnetic potentials.  We shall now make some 

applications of our results to the acceleration of individual 

particles in conducting fluids.  It must be assumed that the 

particles have a certain initial velocity such that the increase 

of their kinetic energy by electromagnetic accelerations can 

exceed the average losses by ionization, collision processes, and 

radiation^ in other words we must assume that an "injection" 

12) process  " exists.  Let us inquire into the electromagnetic 

potentials that accompany magnetohydrodynamic phenomena.  On 

account of the very high energies encountered in cosmic-ray par- 

ticles it is often presumed that there exist special mechanisms 

which increase the field strengths, e.g., self-amplificatory 

plasma oscillations.  Prom the viewpoint of magnetohydrodynamics 

we mirht classify as instabilities any orocc-sses leading to 

electrical potential very much in excess of those found in 

ordinary conducting fluids.  Such processes as well as the 

cyclotron or betatron mechanisms wherp a particle circulates in 

the same field many times, are open to the criticism that on 

purely statistical grounds they are not likely to be sufficiently 

WW » WW•••WW 
~       ''S?>',   "^   .ft   ,-.• 
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widespread or effective:  Given the relatively large energy 

density of the cosmic radiation one is prejudiced in favor of 

processes that can be counted upon to occur regularly in large 

volumes of cosmic space. 

Here, we shall abstract from all processes except those 

directly related to the average conditions of cosmic magneto- 

hydrodynamics.  The electrical potential, (p , between two points 

of space is by (9) of the order 

{j6 }  = {XE ]   m    {XVBj (30) 

If we assume that equipartition prevails this becomes, by (25) 

{0} = {(nftl/2XV2] (31) 

These relations must be interpreted with some care. 

The potentials are of course to be understood as line integrals, 

vEdX, along some possible trajectory.  The particles spiral along 

the magnetic lines of force, but these lines of force are not in 
13) general closed   and the particles will not in general follow 

the lines accurately owing to collisions and accelerations. 

Everything depends on the measure (in a set—theoretical sense) 

of trajectories that actually yield potential differences of the 

order indicated.  If this measure is not too small some particles 

will be accelerated provided they have the required injection 

velocities.  The above .formulas do  not discriminate between the 

non-divergent and the irrotational part of E, the two being of 

comparable order. 

If the region where the acceleration occurs is highly 

inhomogeneous we may apply (30):  In the envelope of a star the 

density changes very rapidly with height and the magnetic field 

i •  iyi I'm 
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will as a rule not be of local origin but will emanate from the 

lower layers of the star.  If we can estimate fB j from other data, 

(30) gives an estimate of the order of magnitude of the accelerating 

potentials.  It is wel.\ known that at the occasion of solar flares 

the sun has ejected numerous particles with energies of the order 

of 10 eV.  The acceleration of particles in stellar envelopes 

has been extensively discussed and we may be satisfied to refer 

to the literature14^.  WI-jh X = 109m, V = 104m/sec and B = 10"2 

{= 100 gauss) we obtain ^ = 10  volts. Apart from possible 

phenomena of instability, it is not likely that magnetohydro- 

dynsmic processes in the neighborhood of stars will lead to 

potentials exceeding this value by several cowers of ten. 

If we next consider the gaseous interstellar medium 

we may assume that the equipartition formula (25) applies, as 

has been done by a nurnber of authors     ; we may then use (21 . 

The variations in V admissible here are rather limited) 

V = 10 km/sec should be reasonably close to an upper limit. 

Extremely high voltages could be produced by increasing X.  If 

we assume one proton per cm  in the average over the galaxy, 

that is (in mks units) § =  10~21, take V = 3*103 and X =  1020 

(comparable to the dimensions of the more condensed parts of the 

galaxy) we obtain 0 = 10"*"4 volts.  We tfan increase this value 

15) by increasing X still further.  Chandrasekhar and Fermi 

suspect the presence of magnetic fields in the spiral arms of the 

16) galaxy.  E. N. Parker   has studied the formation of galaxies 

from an intergalactic gaseous medium and concludes that turbulent 

velocities of the order of 40 km/sec ought to be present in this 

medium.  If there is also some magnetic field in these dimensions^ 
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It seems no-jsible to account quantitatively for the presence of 

extremely energetic oar'Icles by acceleration over sufficiently 

large linear dimensions. 

If the galactic magnetic field is of the order given by 

the equipartition formula (25), the particles circulate in the 

galaxy for a very long time and they will acquire their high 

energies by multiple interaction with the irregular magnetic 

12) field of the gas.  The mechanism proposed by Fermi   represents 

a specific model where the magnetohydrodynamic field takes the 

form of statistical motions of individualized eras clouds.  If 

from the above figures we compute the energy density of the 

galactic medium it is found slightly in excess of 10~^ erg/cm • 

Given the roughness of the data this is very close to the energy 

density of the cosmic radiation estimated   as 10" erg/cm . 

It is likely, therefore, that the cosmic radiation is nearly in 

dynamical equilibrium with the galactic magnetic fields and 

17) hence also with the motions of the gas.  Fan   has indicated 

that one can account for many features of the observed cosmic- 

ray spectrum on the basis of Fermi's accelerating mechanism. 

The general principles of nagnetohvdrodynamics as outlined above 

give strong support to the idea that the spectral distribution 

of the cosmic rays must, at least asymptotically, correspond to 

an equilibrium with the interstellar gas. 
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